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Abstract. There is a four-parameter family of point interactions in one-dimensional quantum
mechanics. They represent all possible self-adjoint extensions of the kinetic energy operator. If
time-reversal invariance is imposed, the number of parameters is reduced to three. One of these
point interactions is the familiat function potential but the other generalized ones do not seem

to be widely known. We present a pedestrian approach to this subject and comment on a recent
controversy in the literature concerning the so-callethteraction. We emphasize that there is

little resemblance between tldéinteraction and what its name suggests.

1. Introduction

There is a four-parameter family of point interactions in one-dimensional quantum
mechanics [1]. These point interactions represent all possible self-adjoint extensions (SAES)
of the non-relativistic kinetic energy (KE) operateih?/2m) d?/dx2. In the following we
use units in whicth?/2m = 1. A point interaction is such that it is zero everywhere except
at the originx = 0. We will review the notion of SAEs in due course. If time-reversal
invariance is imposed, as we will see, the number of independent parameters for the point
interactions is reduced to three. Unless we mention otherwise, we assume time-reversal
invariance. We confine ourselves to one dimension throughout thisijpaper

One of these point interactions is the familé&afunction potential

V(x) = g8(x) (1)
whereg is a constant parameter. The Saflinger equation for a stationary state reads as
—y"(x) + V()Y (x) = EY(x) (2

wherey” = d?y/dx? and other notation is standard. Wiih(x) of (1), it is understood
that the wavefunction (x) is subject to the set of boundary conditionscat 0,

¥(0") =¢(07) = ¥(0) 3
¥'(0%) —¢'(07) = gy (0). 4

1 We consider the entire space. One can think of two half-spacesy 0 andx < 0, that are completely disjoint.
We do not consider such a situation in this paper.
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These conditions can be derived by first replaciig) with a function of a finite width,
for example, a function of the square well form, solving the 8dhrger equation, and
then letting the width tend to zero. Alternatively one can integrate the left- and right-hand
sides of the Sclidinger equation over the intervéle¢, ¢) and lete — 0. In this second
derivation, the continuity of/, i.e. (3), is an assumption.

At this point let us warn the reader that, unlike finite-range potentials, of (1) is
not a proper operator in Hilbert space. This is in the sense that

oo oo

/ V@Y ) Pdr = ng ¥ (0)]*dx = oo. ®)
—00 —0Q0

That is, V(x) transformsy (x) to V(x)¥ (x) which is not normalizable. Th& (x) of (1)

should be interpreted as a device which leads to the set of boundary conditions (3) and (4).

One may think that this is a matter of mathematical pedantry. It can be taken as such for

the § interaction but, as we will see, not for the other generalized point interactions. Even

for the § interaction, this warning is relevant when it is used for the Dirac equation.

The subject of SAEs of the KE operator in one dimension has been discussed extensively
in the mathematics-oriented literature [1-5]. We are aware of a few recent papers which dealt
with the subject in more physical contexts, namely those by Cageal6], by Carreau [7]
and by Exner [8]. We are still under the impression, however, that the notion of generalized
point interactions in one dimension has not permeated widely among the practitioners of
guantum mechanics. A few years ago there was a controversy in the literature concerning
the so-calledd’ interaction that is one of the point interactions [9-11]. That controversy
well illustrated how confusing the subject could be. We do not think the controversy has
been clarified satisfactorily.

The purpose of this paper is to present a pedestrian approach to the subject and comment
on the above-mentioned controversy on the so-calledteraction. This paper has some
overlap with, but is complementary to, those of Carretai [6] and Carreau [7]. We explore
the nature of thé’ interaction in more depth. Exner’s interest was rather different from ours
[8]. He examined models of graph superlattices that involvestaad §’ interactions. We
focus on non-relativistic quantum mechanics, but we will also briefly discuss the relativistic
Dirac equation.

In section 2 we review the notion of an SAE of an operator. For the KE operator its
SAEs are related to boundary conditions to be satisfied by the wavefunctions at the origin.
We then examine the boundary conditions in a general form. In section 3 we examine
implications of SAEs of the KE operator in the context of the transmission problem. In
this way, for example, it becomes clear why there are three parameters in the SAEs that
conform to time-reversal invariance. In section 4 we discuss difficulties in associatiag the
interaction with the derivative of thiinteraction. In section 5 we discuss point interactions
for the Dirac equation. A summary is given in section 6.

2. Self-adjoint extensions of the kinetic energy operator

An operator, sayA, is defined by specifying its action on every vector in a space or its
dense domain that is smaller than the entire space. The adjbiot operatorA is defined
such that

(BIAY) = (AToly) (6)

for all ¢ and¢. Herey is in the domain ofA andg¢ in the domain ofAf. If the two domains
coincide and ifAT = A, operatorA is said to be self-adjoint [12]. In the one-dimensional
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case,A is self-adjoint if

/Z ¢ A dx — /:(Aqb)*wdx ~0 (7)

holds for any pair of normalizable wavefunctiotigx) and¢(x) in the same domain.
Let us consider the KE operator
d2
A= ~ a2 (8)
Then (7) can be reduced to

_/ (¢*1//_// _ ¢”*l/f)dx — [¢*wr _¢/*w]8ir -0 (9)

where it is understood that(x) and ¢ (x) are both twice-differentiable except at= 0.
Often it is tacitly assumed thak(x) and ¢ (x) and their derivatives are all continuous at
x = 0. In that case (9) obviously holds. Equation (9) itself, however, does not require such
continuity atx = 0. If we find a set of boundary conditions fgr and also forp atx =0
such that (9) is satisfied, then we obtain a SAE of the KE operator. Conditions (3) and (4)
are such an example. It is easy to confirm that (3) and (4) together with the same in which
¥ is replaced withy satisfy (9). Theg of (1) can take any real value; thus we obtain a
one-parameter family.

We are interested in most general boundary conditions that meet (9). They can be
obtained in a variety of forms but let us examine those given by Gesztesy and Kirsh [13]
and discussed b@eba [4]. They are

—y'(07) —ay'(07) = By (07) (10)

—=8y'(07) —yy¥(07) = ¥ (0") (11)
wherew, 8, y andd$ are real constants subject to

ay — B8 =1 (12)

Note thatsy’ is not a variation ofyy’. We have written the boundary conditions fer
and v’ but they apply to any other possible wavefunctions. After a little algebra one can
confirm that boundary conditions (10)—(12) satisfy (9). Amangs, y andd, three are
independent. Thus we have a three-parameter family of SAEs. This is how we define the
generalized point interactions. Suppose, furthermore, that the interaction is invariant under
space reflectionc — —x. This means that the boundary conditions are invariant under
¥ (0F) — ¢(0F) andy’(0F) — —y/(0F). This holds if and only ife = y.

Let us mention two special cases. Equations (3) and (4) foé ihéeraction mean that

a=-1 B=—g y=-1 §=0. (13)
On the other hand th& interaction [1-5] is defined by boundary conditions (10)—(12) with
a=-1 B=0 y=-1 8 =—c. (14)

This implies that, while)’(x) is continuous ak = 0, v (x) is discontinuous. Note that the

8’ interaction so defined is invariant under~ —x (becausex = y). This is in contrast to

8’(x) which is an odd function of. Here and in the following, by’ (x), we mean é(x)/dx.

We think that the naming of th& interaction was unfortunate because the interaction has
little resemblance to what the name suggests. We will discuss this further as we proceed.
In this regard we concur with Exner [8] who said that the name is somewhat misleading.
See his comment below equation (2.1).
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Carreauet al [6] and Carreau [7] used more general boundary conditions which are
expressed in terms of four real parameterss, o and6. Their « and g8 are different
from those of (10) and (11). If we assume time-reversal invariance, however, one of the
four parametersy, becomes a trivial one. In their boundary conditiofisappears in the
form of €’. Time-reversal invariance requires that and vy satisfy the same boundary
conditions as those fapy andy’ (with the same coefficients, not their complex conjugates).
In other words we should be able to chasdo be real for a stationary state. This requires
that & be real, which restrict§ to integral multiples ofr. The relevance of time-reversal
invariance will become more transparent in the next section.

3. Relation to the transmission problem

In the preceding section we quoted a set of boundary conditions (10) and (11). These are
the most general conditions that conform to time-reversal invariance. They contain three
real parameters. One may wonder why there are only three parameters and not more. In
this regard it is instructive to relate the problem to that of transmission.

When a wave representing a particle is incident on a potential, it is partially transmitted
and partially reflected. This can be described in terms of transmission coeffidients
and Tr and reflection coefficient®_ and Rg. Suffices L and R refer to the situations in
which the wave is incident from the left and right, respectively. TreandRs are in
general complex. Hence, they involve altogether eight real parameters. However, unitarity
(probability conservation) reduces the number of independent parameters to four. Time-
reversal invariance leads @ = 7r and reduces the number of independent parameters to
three. Let us assume time-reversal invariance sofhat Tr and suppress suffices L and
R of T. If the interactions happen to be symmetric with respeat te —x, it follows that
R. = Rr and we are left with only two parameters. Insteadl'sfandRs, we can use the
S-matrix which is a 2< 2 unitary matrix. Its matrix elements can be expressed in terms of
three real parameters, which can be the two eigenphases and the mixing parameter
[14-186].

Let us examine the relation between parameterg, y ands of (10) and (11) and the
T andRs. If the wave is incident from the left, the wavefunction can be written as

g 4 R ek forx <0

o) = T forx >0

(15)

wherek = +/E. Imposing (10) and (11) om, and also ormyr which can similarly be
written down, we obtain

—2ik

T=-—~ (16)
2 _

R = B+ ok +D|k(a Y) (17)
2 _j _

. B+ 8k le((x Y) (18)

D = —B + 8k +ik(a + y). (19)

We have used (12). If we do not impose (12), unitarity does not hold. The egRality Rr
holds if and only ife = y. For a finite potential (and also for tliepotential), we know that
T — 1 ask — oo. TheT of (16), however, does not necessarily approach & as cc.
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The eigenphaseg, n, and the mixing parametercan be expressed in termsBf R_ and
RRr [186].

There is a bound state with energy? if D = 0 for k = ik wherex > 0. Its ¥ (x) is
of the form of e** (&) for x > 0 (x < 0), but it is in general discontinuous at= 0. We
obtain

+
zigi :oz—i-g = —(y + 8k). (20)

It can be shown thaty (07)/v(07)| = 1 if and only ifa = y.
Let us write down thel’ and Rs for the two special cases of tlieand§’ interactions.
For thes interaction with (13) we find

—2ik

= 21

g — 2ik (21)

Ri=Rp= 5. (22)

g — 2ik
If ¢ < O there is a bound state with energy? wherex = —g/2. Its wavefunction is
V(x) = /i e <l
For thed’ interaction with (14) we obtain
2i
= . 23
ck + 2i (23)
ck
RL=Rr= . 24
- R™ ek + 2i (24)

Note that? — 0 andR — 1 ask — oo. If ¢ < O there is a bound state with energy?
wherex = —2/c. Its wavefunction isy(x) = /k(x/|x|) e “FI. This is the only bound
state, yet it is of odd parity.

Before ending this section, let us again comment on the boundary conditions used by
Carreauet al [6] and Carreau [7]. If their'@ is not real, therfy # Tr which implies that
time-reversal invariance does not hold. Unitarity, however, holds even whésret real.

We find this feature very interesting in the following sense. Supgoee of (2) is an
ordinary finite potential. Time-reversal invariance requires ¥hat) is real. Then unitarity
holds. On the other hand, unitarity requires thdk) is real, then time-reversal invariance
ensues. Thus time-reversal invariance and unitarity are inseparable for a finite potential.
For generalized point interactions, however, we can have a situation such that time-reversal
invariance is violated, yet unitarity is valid.

4. The §' interaction
Let us consider @ function dipole and define a functiofy (x) by
1
frx) =1lim ——[8(x +¢€) —8(x — €)] (25)
e—0 2¢V

wherev > 0 is a parameter. The,(x) can be interpreted a%(x). Seba [5] showed very
interesting results for the following interaction,
V(x) = Afo(x) (26)

whereA is a constant.
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Let us complemeréeba’s highly mathematical analysis with an elementary one for the
same interaction (26). Before taking the linit—> 0, we obtain the followingl' and Rs,

k2
T=— 27
. (27)
—h 872i€k k2 e4iek
R = . [1 — } (28)
h— ik A
—h e—2iek k2 e4iek
Rr = _ 1- 29
R h+ ik [ A } (29)
A .
h=_— A = k> + h%2(1 — e¥hy, (30)
2¢V
For this derivation, see example 3 of [16Whenek « 1 theT and Rs become
ik
T=———r 31
4eh? + ik (31)
—4eh?
RLAXRR= —5—. 32
FTRT den? ik (32)

Note that 4h% = A%e1~2",

If we let € — 0, the following three situations ensue.

(i) If v > 1/2, theneh? — oo and hencel’ — 0, R, — —1 andRr — —1. The two
subspaces of > 0 andx < 0 become effectively disjoint.

(i) If v = 1/2, the T and Rs become identical to those due to interaction (1) with
g =—2%/2.

(i) If v < 1/2, theneh? — 0, T — 1 and theRs vanish. That is, the interaction
disappears.

These three situations are exactly the same as those fouSetmy [5]. As we stated
before, f,(x) becomess’(x) whenv = 1. This leads to situation (i) that is not very
interesting. It is clear that th& interaction does not follow from (25) with = 1 or any
other value ofv.

In the above it was understood thatand v are kept fixed. One can take a flexible
attitude and scalg, for example, in such a way thak? is kept constant. This is in the same
spirit as the one taken in defining tliefunction interactions in three and two dimensions
[17,18]. This, however, does not give anything new; whkgéf is a certain constant, the
and Rs of (31) and (32) are nothing but those of theotential (1) withg = 8¢h?. So we
end up with situation (ii).

A few years ago Zhao [9] examined the potential

V(x) =cé (x) (33)
and arrived at the boundary conditions

YO0 =y(0)=0 (34)

Y(0%) = y/(07) = =S 1w/ + /@], (35)

He then criticized the boundary conditions for tbleinteraction of Gesztesy and Holden
[3], i.e. (10) and (11) together with (14). Albever al pointed out that Zhao's conditions
are flawed [9]. Indeed Zhao’s conditions do not conform to (10) and (11). If we use

1 In each of equations (6.10) and (6.11) of [16], #rein the numerator of the second term of the right-hand side
should read ag.
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his conditions for the transmission problem we obtain nonsensical results. Albe¥eio
stressed that one should not take $hénteraction too literally as Zhao did.

Griffiths [11] also criticized Zhao's conditions and derived different boundary conditions
for V(x) of (33). His conditions are

YO — Y (07) = g[wm +9(00)] (36)
¥'(0F) — /(07 = —glw’m + 9/ (0], (37)

These conditions, which are different from those of the so-cdllédteraction, do conform
to (10) and (11) with

c—2 1

b r=, (38)
therefore, they are acceptable conditions of SAE. They lead to the folloWiagd Rs
-2
T = 39
oa—+y (39)
od—Yy

R.=—Rg= 40
L= Re= (40)

which are all independent df.

A question remains, however. Are Griffiths’ conditions really correct¥ex) of (33)?
If they are, we should be able to obtain tifeand Rs given above by using interaction
(26) with v = 1. This is not the case, however, §sba showed and we have confirmed.
The source of this discrepancy can be traced in Griffiths’ derivation of his conditions. In
deriving (37) he used

€ € 1
/ 8 ()Y (x)dx = —/ S()Y' (x) dx = —5[1///(0+) +¢'(0)]. (41)
We can writes’(x) as
§'(x) = lim i[cS(x +a)—8(x —a)]. (42)
a—0 20
It is understood that & « < €. For finite« we obtain

€ 1
f § Y (0 de = — () — ¥ (o]
8 o

€

1 1
= - Z*W(Ol) — (0" + ¢ (07) — ¥ (—a)] — —[¥(0") — ¥ (07)]. (43)
o 2u

By letting « — 0, we obtain

€
[ soweds - S 0h + 9 - o O -y (@)
—€

Hence, (41) is valid only ify(x) is continuous ak = 0. As Griffiths himself emphasized,
however,yr (x) is not continuous in the situation under consideration.

Instead of (42) one can also use the derivative of a Gaussian function, and arrive at the
same conclusion. Equation (44) does not depend on the details oBMewis defined.
Griffiths’ derivation of (36) is also marred by a flaw of the same nature. Griffiths derived
conditions for a potential of the form of theth derivative of thes function. Let us
emphasize that there are only three parameters for the possible point interactions within
time-reversal invariance and no room to accommodate potentials of such higher derivatives.
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5. Point interactions for the Dirac equation

The § function interaction (1) used for the non-relativistic Siodinger equation has no
ambiguity. It uniquely implies boundary conditions (3) and (4). When it is used for the Dirac
equation, howeverV (x) of (1) is not well defined unless the boundary conditions for the
wavefunction atc = 0 are explicitly specified. In section 1 we mentioned two prescriptions
for deriving boundary conditions (3) and (4). If one tries the same prescriptions for the
Dirac equation withV (x) of (1) they lead to different sets of boundary conditions. They
differ with respect to the effective strength of the interaction [19, 20]. This is a manifestation
of the fact thatV (x) of (1) is not a proper operator in Hilbert space as we mentioned in
section 1.

In view of this complication regarding thiefunction potential, one may wonder whether
general point interactions for the Dirac equation are very complicated; actually they are not.
Again there is a four-parameter family of SAEs of the relativistic KE operator. When time
reversal is imposed, the number of parameters is reduced to threeS-fiagrix description
of the transmission problem also applies to the relativistic case. In one dimension the Dirac
wavefunction has two componentg; and y,. The lower component, is essentially
the derivative of the upper componewi. The boundary conditions for the Sédinger
equation can be transcribed into those for the Dirac equation by appropriately replacing
and vy’ with ¢, and,, respectively.

6. Summary and discussions

We have reviewed the four-parameter family of point interactions in one dimension. They
represent all possible SAEs of the KE operator. We have pointed out that, if time-
reversal invariance is imposed, the number of parameters is reduced to three. We examined
implications of the SAEs in the context of the transmission problem. The existence of
the three-parameter family of SAEs that conform to time-reversal invariance is related to
the fact that the transmission and reflection coefficients orSHmeatrix elements of the
transmission problem can be expressed in terms of three real parameters. As far as the SAE
of the KE energy is concerned, one-dimensional space is richer than higher dimensions. In
each of two- and three-dimensional spaces there is only one parameter family. No SAE is
possible in four or more dimensions [1].

The point interactions other than the famildaiunction potential are difficult to visualize.
As we said in section 1, thé function potentialV (x) of (1) is not a proper operator in
Hilbert space. It is very unlikely that other point interactions can be expressed in terms
of acceptable operators. The so-calldnteraction does not mix the even and odd parity
states. This already means that thénteraction is different from what one would think of
in terms of§’(x) = d§(x)/dx that is an odd function ok. We have examined thé&(x)
interaction as a limit of function dipole. We have presented an elementary derivation of
Seba'’s results; th&(x) interaction turns out to be equivalent to théunction interaction or
something trivial. We have commented on a recent controversy regardidgitiieraction.
The §’ interaction is the one defined by the boundary conditions (10) and (11) together with
(14). It should not be confused witti(x).

We have briefly discussed point interactions for the Dirac equation. Again there is
a four-parameter family of point interactions for the Dirac equation. When time-reversal
invariance is imposed the number of parameters is reduced to three.
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