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Abstract. There is a four-parameter family of point interactions in one-dimensional quantum
mechanics. They represent all possible self-adjoint extensions of the kinetic energy operator. If
time-reversal invariance is imposed, the number of parameters is reduced to three. One of these
point interactions is the familiarδ function potential but the other generalized ones do not seem
to be widely known. We present a pedestrian approach to this subject and comment on a recent
controversy in the literature concerning the so-calledδ′ interaction. We emphasize that there is
little resemblance between theδ′ interaction and what its name suggests.

1. Introduction

There is a four-parameter family of point interactions in one-dimensional quantum
mechanics [1]. These point interactions represent all possible self-adjoint extensions (SAEs)
of the non-relativistic kinetic energy (KE) operator−(h̄2/2m) d2/dx2. In the following we
use units in which ¯h2/2m = 1. A point interaction is such that it is zero everywhere except
at the originx = 0. We will review the notion of SAEs in due course. If time-reversal
invariance is imposed, as we will see, the number of independent parameters for the point
interactions is reduced to three. Unless we mention otherwise, we assume time-reversal
invariance. We confine ourselves to one dimension throughout this paper†.

One of these point interactions is the familiarδ function potential

V (x) = gδ(x) (1)

whereg is a constant parameter. The Schrödinger equation for a stationary state reads as

−ψ ′′(x)+ V (x)ψ(x) = Eψ(x) (2)

whereψ ′′ = d2ψ/dx2 and other notation is standard. WithV (x) of (1), it is understood
that the wavefunctionψ(x) is subject to the set of boundary conditions atx = 0,

ψ(0+) = ψ(0−) = ψ(0) (3)

ψ ′(0+)− ψ ′(0−) = gψ(0). (4)

† We consider the entirex space. One can think of two half-spaces,x > 0 andx < 0, that are completely disjoint.
We do not consider such a situation in this paper.
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These conditions can be derived by first replacingδ(x) with a function of a finite width,
for example, a function of the square well form, solving the Schrödinger equation, and
then letting the width tend to zero. Alternatively one can integrate the left- and right-hand
sides of the Schrödinger equation over the interval(−ε, ε) and letε → 0. In this second
derivation, the continuity ofψ , i.e. (3), is an assumption.

At this point let us warn the reader that, unlike finite-range potentials,V (x) of (1) is
not a proper operator in Hilbert space. This is in the sense that∫ ∞

−∞
|V (x)ψ(x)|2 dx = g2

∫ ∞
−∞
|ψ(0)|2 dx = ∞. (5)

That is,V (x) transformsψ(x) to V (x)ψ(x) which is not normalizable. TheV (x) of (1)
should be interpreted as a device which leads to the set of boundary conditions (3) and (4).
One may think that this is a matter of mathematical pedantry. It can be taken as such for
the δ interaction but, as we will see, not for the other generalized point interactions. Even
for the δ interaction, this warning is relevant when it is used for the Dirac equation.

The subject of SAEs of the KE operator in one dimension has been discussed extensively
in the mathematics-oriented literature [1–5]. We are aware of a few recent papers which dealt
with the subject in more physical contexts, namely those by Carreauet al [6], by Carreau [7]
and by Exner [8]. We are still under the impression, however, that the notion of generalized
point interactions in one dimension has not permeated widely among the practitioners of
quantum mechanics. A few years ago there was a controversy in the literature concerning
the so-calledδ′ interaction that is one of the point interactions [9–11]. That controversy
well illustrated how confusing the subject could be. We do not think the controversy has
been clarified satisfactorily.

The purpose of this paper is to present a pedestrian approach to the subject and comment
on the above-mentioned controversy on the so-calledδ′ interaction. This paper has some
overlap with, but is complementary to, those of Carreauet al [6] and Carreau [7]. We explore
the nature of theδ′ interaction in more depth. Exner’s interest was rather different from ours
[8]. He examined models of graph superlattices that involve theδ andδ′ interactions. We
focus on non-relativistic quantum mechanics, but we will also briefly discuss the relativistic
Dirac equation.

In section 2 we review the notion of an SAE of an operator. For the KE operator its
SAEs are related to boundary conditions to be satisfied by the wavefunctions at the origin.
We then examine the boundary conditions in a general form. In section 3 we examine
implications of SAEs of the KE operator in the context of the transmission problem. In
this way, for example, it becomes clear why there are three parameters in the SAEs that
conform to time-reversal invariance. In section 4 we discuss difficulties in associating theδ′

interaction with the derivative of theδ interaction. In section 5 we discuss point interactions
for the Dirac equation. A summary is given in section 6.

2. Self-adjoint extensions of the kinetic energy operator

An operator, sayA, is defined by specifying its action on every vector in a space or its
dense domain that is smaller than the entire space. The adjointA† of operatorA is defined
such that

〈φ|Aψ〉 = 〈A†φ|ψ〉 (6)

for all ψ andφ. Hereψ is in the domain ofA andφ in the domain ofA†. If the two domains
coincide and ifA† = A, operatorA is said to be self-adjoint [12]. In the one-dimensional
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case,A is self-adjoint if∫ ∞
−∞

φ∗Aψ dx −
∫ ∞
−∞
(Aφ)∗ψ dx = 0 (7)

holds for any pair of normalizable wavefunctionsψ(x) andφ(x) in the same domain.
Let us consider the KE operator

A = − d2

dx2
. (8)

Then (7) can be reduced to

−
∫ ∞
−∞
(φ∗ψ ′′ − φ′′∗ψ) dx = [φ∗ψ ′ − φ′∗ψ ]0+

0− = 0 (9)

where it is understood thatψ(x) andφ(x) are both twice-differentiable except atx = 0.
Often it is tacitly assumed thatψ(x) andφ(x) and their derivatives are all continuous at
x = 0. In that case (9) obviously holds. Equation (9) itself, however, does not require such
continuity atx = 0. If we find a set of boundary conditions forψ and also forφ at x = 0
such that (9) is satisfied, then we obtain a SAE of the KE operator. Conditions (3) and (4)
are such an example. It is easy to confirm that (3) and (4) together with the same in which
ψ is replaced withφ satisfy (9). Theg of (1) can take any real value; thus we obtain a
one-parameter family.

We are interested in most general boundary conditions that meet (9). They can be
obtained in a variety of forms but let us examine those given by Gesztesy and Kirsh [13]
and discussed by̌Seba [4]. They are

−ψ ′(0+)− αψ ′(0−) = βψ(0−) (10)

−δψ ′(0−)− γψ(0−) = ψ(0+) (11)

whereα, β, γ andδ are real constants subject to

αγ − βδ = 1. (12)

Note thatδψ ′ is not a variation ofψ ′. We have written the boundary conditions forψ
andψ ′ but they apply to any other possible wavefunctions. After a little algebra one can
confirm that boundary conditions (10)–(12) satisfy (9). Amongα, β, γ and δ, three are
independent. Thus we have a three-parameter family of SAEs. This is how we define the
generalized point interactions. Suppose, furthermore, that the interaction is invariant under
space reflectionx → −x. This means that the boundary conditions are invariant under
ψ(0±)→ ψ(0∓) andψ ′(0±)→−ψ ′(0∓). This holds if and only ifα = γ .

Let us mention two special cases. Equations (3) and (4) for theδ interaction mean that

α = −1 β = −g γ = −1 δ = 0. (13)

On the other hand theδ′ interaction [1–5] is defined by boundary conditions (10)–(12) with

α = −1 β = 0 γ = −1 δ = −c. (14)

This implies that, whileψ ′(x) is continuous atx = 0, ψ(x) is discontinuous. Note that the
δ′ interaction so defined is invariant underx →−x (becauseα = γ ). This is in contrast to
δ′(x) which is an odd function ofx. Here and in the following, byδ′(x), we mean dδ(x)/dx.
We think that the naming of theδ′ interaction was unfortunate because the interaction has
little resemblance to what the name suggests. We will discuss this further as we proceed.
In this regard we concur with Exner [8] who said that the name is somewhat misleading.
See his comment below equation (2.1).
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Carreauet al [6] and Carreau [7] used more general boundary conditions which are
expressed in terms of four real parametersα, β, ρ and θ . Their α and β are different
from those of (10) and (11). If we assume time-reversal invariance, however, one of the
four parameters,θ , becomes a trivial one. In their boundary conditions,θ appears in the
form of eiθ . Time-reversal invariance requires thatψ∗ andψ ′∗ satisfy the same boundary
conditions as those forψ andψ ′ (with the same coefficients, not their complex conjugates).
In other words we should be able to choseψ to be real for a stationary state. This requires
that eiθ be real, which restrictsθ to integral multiples ofπ . The relevance of time-reversal
invariance will become more transparent in the next section.

3. Relation to the transmission problem

In the preceding section we quoted a set of boundary conditions (10) and (11). These are
the most general conditions that conform to time-reversal invariance. They contain three
real parameters. One may wonder why there are only three parameters and not more. In
this regard it is instructive to relate the problem to that of transmission.

When a wave representing a particle is incident on a potential, it is partially transmitted
and partially reflected. This can be described in terms of transmission coefficientsTL

andTR and reflection coefficientsRL andRR. Suffices L and R refer to the situations in
which the wave is incident from the left and right, respectively. TheT s andRs are in
general complex. Hence, they involve altogether eight real parameters. However, unitarity
(probability conservation) reduces the number of independent parameters to four. Time-
reversal invariance leads toTL = TR and reduces the number of independent parameters to
three. Let us assume time-reversal invariance so thatTL = TR and suppress suffices L and
R of T . If the interactions happen to be symmetric with respect tox →−x, it follows that
RL = RR and we are left with only two parameters. Instead ofT s andRs, we can use the
S-matrix which is a 2× 2 unitary matrix. Its matrix elements can be expressed in terms of
three real parameters, which can be the two eigenphasesη1, η2 and the mixing parameterε
[14–16].

Let us examine the relation between parametersα, β, γ andδ of (10) and (11) and the
T andRs. If the wave is incident from the left, the wavefunction can be written as

ψL(x) =
{

eikx + RL e−ikx for x < 0

T eikx for x > 0
(15)

wherek = √E. Imposing (10) and (11) onψL and also onψR which can similarly be
written down, we obtain

T = −2ik

D
(16)

RL = β + δk2+ ik(α − γ )
D

(17)

RR = β + δk2− ik(α − γ )
D

(18)

D = −β + δk2+ ik(α + γ ). (19)

We have used (12). If we do not impose (12), unitarity does not hold. The equalityRL = RR

holds if and only ifα = γ . For a finite potential (and also for theδ potential), we know that
T → 1 ask →∞. TheT of (16), however, does not necessarily approach 1 ask →∞.
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The eigenphasesη1, η2 and the mixing parameterε can be expressed in terms ofT , RL and
RR [16].

There is a bound state with energy−κ2 if D = 0 for k = iκ whereκ > 0. Itsψ(x) is
of the form of e−κx (eκx) for x > 0 (x < 0), but it is in general discontinuous atx = 0. We
obtain

ψ(0+)
ψ(0−)

= α + β
κ
= −(γ + δκ). (20)

It can be shown that|ψ(0+)/ψ(0−)| = 1 if and only if α = γ .
Let us write down theT andRs for the two special cases of theδ andδ′ interactions.

For theδ interaction with (13) we find

T = −2ik

g − 2ik
(21)

RL = RR = −g
g − 2ik

. (22)

If g < 0 there is a bound state with energy−κ2 whereκ = −g/2. Its wavefunction is
ψ(x) = √κ e−κ|x|.

For theδ′ interaction with (14) we obtain

T = 2i

ck + 2i
(23)

RL = RR = ck

ck + 2i
. (24)

Note thatT → 0 andR→ 1 ask→∞. If c < 0 there is a bound state with energy−κ2

whereκ = −2/c. Its wavefunction isψ(x) = √κ(x/|x|) e−κ|x|. This is the only bound
state, yet it is of odd parity.

Before ending this section, let us again comment on the boundary conditions used by
Carreauet al [6] and Carreau [7]. If their eiθ is not real, thenTL 6= TR which implies that
time-reversal invariance does not hold. Unitarity, however, holds even when eiθ is not real.
We find this feature very interesting in the following sense. SupposeV (x) of (2) is an
ordinary finite potential. Time-reversal invariance requires thatV (x) is real. Then unitarity
holds. On the other hand, unitarity requires thatV (x) is real, then time-reversal invariance
ensues. Thus time-reversal invariance and unitarity are inseparable for a finite potential.
For generalized point interactions, however, we can have a situation such that time-reversal
invariance is violated, yet unitarity is valid.

4. The δ′ interaction

Let us consider aδ function dipole and define a functionfν(x) by

fν(x) = lim
ε→0

1

2εν
[δ(x + ε)− δ(x − ε)] (25)

whereν > 0 is a parameter. Thef1(x) can be interpreted asδ′(x). Šeba [5] showed very
interesting results for the following interaction,

V (x) = λfν(x) (26)

whereλ is a constant.
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Let us complemenťSeba’s highly mathematical analysis with an elementary one for the
same interaction (26). Before taking the limitε → 0, we obtain the followingT andRs,

T = k2

1
(27)

RL = −h e−2iεk

h− ik

[
1− k

2 e4iεk

1

]
(28)

RR = −h e−2iεk

h+ ik

[
1− k

2 e4iεk

1

]
(29)

h = λ

2εν
1 = k2+ h2(1− e4iεk). (30)

For this derivation, see example 3 of [16]†. Whenεk � 1 theT andRs become

T = ik

4εh2+ ik
(31)

RL ≈ RR = −4εh2

4εh2+ ik
. (32)

Note that 4εh2 = λ2ε1−2ν .
If we let ε → 0, the following three situations ensue.
(i) If ν > 1/2, thenεh2→∞ and henceT → 0, RL → −1 andRR→ −1. The two

subspaces ofx > 0 andx < 0 become effectively disjoint.
(ii) If ν = 1/2, the T andRs become identical to those due to interaction (1) with

g = −λ2/2.
(iii) If ν < 1/2, thenεh2 → 0, T → 1 and theRs vanish. That is, the interaction

disappears.
These three situations are exactly the same as those found byŠeba [5]. As we stated

before, fν(x) becomesδ′(x) when ν = 1. This leads to situation (i) that is not very
interesting. It is clear that theδ′ interaction does not follow from (25) withν = 1 or any
other value ofν.

In the above it was understood thatλ and ν are kept fixed. One can take a flexible
attitude and scaleλ, for example, in such a way thatεh2 is kept constant. This is in the same
spirit as the one taken in defining theδ function interactions in three and two dimensions
[17, 18]. This, however, does not give anything new; whenεh2 is a certain constant, theT
andRs of (31) and (32) are nothing but those of theδ potential (1) withg = 8εh2. So we
end up with situation (ii).

A few years ago Zhao [9] examined the potential

V (x) = cδ′(x) (33)

and arrived at the boundary conditions

ψ(0+) = ψ(0−) = 0 (34)

ψ ′(0+)− ψ ′(0−) = − c
2

[ψ ′(0+)+ ψ ′(0−)]. (35)

He then criticized the boundary conditions for theδ′ interaction of Gesztesy and Holden
[3], i.e. (10) and (11) together with (14). Albeverioet al pointed out that Zhao’s conditions
are flawed [9]. Indeed Zhao’s conditions do not conform to (10) and (11). If we use

† In each of equations (6.10) and (6.11) of [16], theβ2 in the numerator of the second term of the right-hand side
should read asβ.
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his conditions for the transmission problem we obtain nonsensical results. Albeverioet al
stressed that one should not take theδ′ interaction too literally as Zhao did.

Griffiths [11] also criticized Zhao’s conditions and derived different boundary conditions
for V (x) of (33). His conditions are

ψ(0+)− ψ(0−) = c

2
[ψ(0+)+ ψ(0−)] (36)

ψ ′(0+)− ψ ′(0−) = − c
2

[ψ ′(0+)+ ψ ′(0−)]. (37)

These conditions, which are different from those of the so-calledδ′ interaction, do conform
to (10) and (11) with

α = c − 2

c + 2
β = 0 γ = 1

α
δ = 0 (38)

therefore, they are acceptable conditions of SAE. They lead to the followingT andRs

T = −2

α + γ (39)

RL = −RR = α − γ
α + γ (40)

which are all independent ofk.
A question remains, however. Are Griffiths’ conditions really correct forV (x) of (33)?

If they are, we should be able to obtain theT andRs given above by using interaction
(26) with ν = 1. This is not the case, however, asŠeba showed and we have confirmed.
The source of this discrepancy can be traced in Griffiths’ derivation of his conditions. In
deriving (37) he used∫ ε

−ε
δ′(x)ψ(x) dx = −

∫ ε

−ε
δ(x)ψ ′(x) dx = −1

2
[ψ ′(0+)+ ψ ′(0−)]. (41)

We can writeδ′(x) as

δ′(x) = lim
α→0

1

2α
[δ(x + α)− δ(x − α)]. (42)

It is understood that 0< α < ε. For finiteα we obtain∫ ε

−ε
δ′(x)ψ(x) dx = − 1

2α
[ψ(α)− ψ(−α)]

= − 1

2α
[ψ(α)− ψ(0+)+ ψ(0−)− ψ(−α)] − 1

2α
[ψ(0+)− ψ(0−)]. (43)

By letting α→ 0, we obtain∫ ε

−ε
δ′(x)ψ(x) dx →−1

2
[ψ ′(0+)+ ψ ′(0−)] − 1

2α
[ψ(0+)− ψ(0−)]. (44)

Hence, (41) is valid only ifψ(x) is continuous atx = 0. As Griffiths himself emphasized,
however,ψ(x) is not continuous in the situation under consideration.

Instead of (42) one can also use the derivative of a Gaussian function, and arrive at the
same conclusion. Equation (44) does not depend on the details of howδ′(x) is defined.
Griffiths’ derivation of (36) is also marred by a flaw of the same nature. Griffiths derived
conditions for a potential of the form of thenth derivative of theδ function. Let us
emphasize that there are only three parameters for the possible point interactions within
time-reversal invariance and no room to accommodate potentials of such higher derivatives.
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5. Point interactions for the Dirac equation

The δ function interaction (1) used for the non-relativistic Schrödinger equation has no
ambiguity. It uniquely implies boundary conditions (3) and (4). When it is used for the Dirac
equation, however,V (x) of (1) is not well defined unless the boundary conditions for the
wavefunction atx = 0 are explicitly specified. In section 1 we mentioned two prescriptions
for deriving boundary conditions (3) and (4). If one tries the same prescriptions for the
Dirac equation withV (x) of (1) they lead to different sets of boundary conditions. They
differ with respect to the effective strength of the interaction [19, 20]. This is a manifestation
of the fact thatV (x) of (1) is not a proper operator in Hilbert space as we mentioned in
section 1.

In view of this complication regarding theδ function potential, one may wonder whether
general point interactions for the Dirac equation are very complicated; actually they are not.
Again there is a four-parameter family of SAEs of the relativistic KE operator. When time
reversal is imposed, the number of parameters is reduced to three. TheS-matrix description
of the transmission problem also applies to the relativistic case. In one dimension the Dirac
wavefunction has two components,ψ1 and ψ2. The lower componentψ2 is essentially
the derivative of the upper componentψ1. The boundary conditions for the Schrödinger
equation can be transcribed into those for the Dirac equation by appropriately replacingψ

andψ ′ with ψ1 andψ2, respectively.

6. Summary and discussions

We have reviewed the four-parameter family of point interactions in one dimension. They
represent all possible SAEs of the KE operator. We have pointed out that, if time-
reversal invariance is imposed, the number of parameters is reduced to three. We examined
implications of the SAEs in the context of the transmission problem. The existence of
the three-parameter family of SAEs that conform to time-reversal invariance is related to
the fact that the transmission and reflection coefficients or theS-matrix elements of the
transmission problem can be expressed in terms of three real parameters. As far as the SAE
of the KE energy is concerned, one-dimensional space is richer than higher dimensions. In
each of two- and three-dimensional spaces there is only one parameter family. No SAE is
possible in four or more dimensions [1].

The point interactions other than the familiarδ function potential are difficult to visualize.
As we said in section 1, theδ function potentialV (x) of (1) is not a proper operator in
Hilbert space. It is very unlikely that other point interactions can be expressed in terms
of acceptable operators. The so-calledδ′ interaction does not mix the even and odd parity
states. This already means that theδ′ interaction is different from what one would think of
in terms ofδ′(x) = dδ(x)/dx that is an odd function ofx. We have examined theδ′(x)
interaction as a limit ofδ function dipole. We have presented an elementary derivation of
Šeba’s results; theδ′(x) interaction turns out to be equivalent to theδ function interaction or
something trivial. We have commented on a recent controversy regarding theδ′ interaction.
Theδ′ interaction is the one defined by the boundary conditions (10) and (11) together with
(14). It should not be confused withδ′(x).

We have briefly discussed point interactions for the Dirac equation. Again there is
a four-parameter family of point interactions for the Dirac equation. When time-reversal
invariance is imposed the number of parameters is reduced to three.
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[5] Šeba P 1986Rep. Math. Phys.24 111
[6] Carreau M, Farhi E and Gutmann S 1990Phys. Rev.D 42 1194
[7] Carreau M 1986J. Phys. A: Math. Gen.26 427
[8] Exner P 1996J. Phys. A: Math. Gen.29 87
[9] Zhao Bao-Heng 1992J. Phys. A: Math. Gen.25 L617

[10] Albeverio S, Gesztesy F and Holden H 1993J. Phys. A: Math. Gen.26 3903
[11] Griffiths D J 1993J. Phys. A: Math. Gen.26 2265
[12] Jordan T F 1969Linear Operators for Quantum Mechanics(New York: Wiley) ch 2
[13] Gesztesy F and Kirsh W 1984 One dimensional Schrödinger operator with interaction singular on a discrete

setZIF Preprint University of Bielefeld 37
[14] Merzbacher E 1970Quantum Mechanics2nd edn (New York: Wiley) ch 6
[15] Sassoli de Bianchi M 1994J. Math. Phys.35 2719
[16] Nogami Y and Ross C K 1996Am. J. Phys.64 923
[17] Thomas L H 1935Phys. Rev.47 903
[18] Bruch L W and Tijon J A 1979Phys. Rev.A 19 425
[19] Calkin M G, Kiang D and Nogami Y 1987Am. J. Phys.55 737

Calkin M G, Kiang D and Nogami Y 1989Phys. Rev.C 38 1076
[20] McKellar B H and Stephenson G J Jr1987Phys. Rev.C 35 2262


